SISTEMA MULTIDIMENSIONAL GRACELI EM:

 

SISTEMA MULTIDIMENSIONAL GRACELI EM;

 

SISTEMA DE TENSOR G+ GRACELI , ESTADOS FÍSICOS QUÍMICO-FENOMÊNICO DE GRACELI CATEGORIAS E Configuração eletrônica dos elementos químicos

 




  TENSOR G+ GRACELI, SDCTIE GRACELI, DENSIDADE DE CARGA E DISTRIBUIÇÃO ELETRÔNICA, NÍVEIS DE ENERGIA, NÚMERO E ESTADO QUÂNTICO. + POTENCIAL DE SALTO QUÂNTICO RELATIVO AOS ELEMENTOS QUÍMICO COM O SEU RESPECTIVO  E ESPECÍFICO NÍVEL DE ENERGIA.



SISTEMA MULTIDIMENSIONAL  GRACELI

ONDE A CONFIGURAÇÃO ELETRÔNICA TAMBÉM PASSA A SER DIMENSÕES FÍSICO-QUÍMICA DE GRACELI.


Configuração eletrônica dos elementos químicos (página de dados)



Equações de Einstein

Tendo formulado a versão relativista e geométrica dos efeitos da gravidade, a questão da fonte da gravidade permanece. Na gravidade newtoniana, a fonte é massa. Na relatividade especial, a massa acaba por ser parte de uma quantidade mais geral chamada de tensor de energia-momento, que inclui densidades de energia e de momento, bem como tensãopressão e cisalhamento.[32] Usando o princípio da equivalência, este tensor é prontamente generalizado para o espaço-tempo curvo. Com base na analogia com a gravidade newtoniana geométrica, é natural supor que a equação de campo para a gravidade relaciona esse tensor com o tensor de Ricci, que descreve uma classe particular de efeitos de maré: a mudança de volume para uma pequena nuvem de partículas de teste que estão inicialmente em repouso e depois caem livremente. Na relatividade especial, a conservação de energia-momento corresponde à afirmação de que o tensor de energia-momento é livre de divergência. Essa fórmula também é prontamente generalizada para o espaço-tempo curvo, substituindo as derivadas parciais por suas contrapartes curvadas-múltiplasderivadas covariantes estudadas na geometria diferencial. Com essa condição adicional — a divergência covariante do tensor energia-momento, e, portanto, de qualquer coisa que esteja do outro lado da equação, é zero — o conjunto mais simples de equações é chamado de equações (de campo) de Einstein:

Equações de campo de Einstein

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


Do lado esquerdo está o tensor de Einstein, uma combinação específica livre de divergência do tensor de Ricci  e da métrica. Onde  é simétrico. Em particular,

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.

é a curvatura escalar. O próprio tensor de Ricci está relacionado com o tensor de curvatura de Riemann mais geral

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.

Do lado direito,  é o tensor energia-momento. Todos os tensores são escritos em notação de índices abstratos.[33] Combinando a previsão da teoria com resultados observacionais para órbitas planetárias ou, equivalentemente, assegurando que o limite de gravidade fraca e baixa velocidade é a mecânica newtoniana, a constante de proporcionalidade pode ser fixada como κ = 8πG/c4, com G a constante gravitacional e c a velocidade da luz.[34] Quando não há nenhuma matéria presente, de modo que o tensor de energia-momento desaparece, os resultados são as equações de vácuo de Einstein,





Forma matemática da equação do campo de Einstein

A equação do campo de Einstein descreve como o espaço-tempo se curva pela matéria e, reciprocamente, como a matéria é influenciada pela curvatura do espaço-tempo, ou digamos, como a curvatura dá lugar à gravidade.

A equação do campo se apresenta como se segue:

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


onde o tensor  é a curvatura de Einstein, uma equação diferencial de segunda ordem em termos do tensor métrico , e  é o tensor de energia-momento. A constante de acoplamento se dá em termos de  é Pi é a velocidade da luz e  é a constante gravitacional.

O tensor da curvatura de Einstein se pode escrever como

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


onde além disso  é o tensor de curvatura de Ricci é o escalar de curvatura de Ricci e  é a constante cosmológica.

A equação do campo portanto também pode apresentar-se como se segue:

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


 é um tensor simétrico 4 x 4, assim que tem 10 componentes independentes. Dada a liberdade de escolha das quatro coordenadas do espaço-tempo, as equações independentes se reduzem em número a 6.

Estas equações são a base da formulação matemática da relatividade geral.

Interpretacão geométrica da Equação de Einstein


//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.

Por exemplo, no caso da Terra o excesso radial é de 0,15 cm e no caso do Sol é de aproximadamente 500 metros.

É notável que, esta equação, que introduz mínimas correções nas fórmulas da geometria euclidiana, atinja quase todas as equações conhecidas da Física macroscópica. Com efeito, quando a velocidade da luz c tende ao infinito, dela se derivam a Lei newtoniana da Gravitação, a Equação de Poisson e, portanto, o caráter atrativo das forças gravitacionais, as equações da mecânica dos fluidos (equação de continuidade e equações de Euler), as leis de conservação da massa-energia e do momento, o caráter euclidiano do espaço, etc..

Igualmente se derivam todas as leis de conservação relativísticas, e que a existência de campos gravitacionais e de massa só são possíveis quando o espaço tem dimensão maior que 2. Mais ainda, se supõe que o espaço tem dimensão 4 (as três que vemos habitualmente mais uma pequeníssima dimensão circular extra, aproximadamente do tamanho do chamado comprimento de Planck ~  cm) da equação de Einstein se deduzem a teoria clássica do electromagnetismo: as equações de Maxwell e, portanto, a lei de Coulomb, a Conservação da carga elétrica e a lei de Lorentz.

Equações de Einstein-Maxwell

Se o tensor energia-momento  é aquele de um campo eletromagnéticoi.e. se o tensor momento-energia eletromagnético

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.

é usado, então as equações de campo de Einstein são chamadas equações Einstein-Maxwell:

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


onde c = 3 × 1010 [cm s-1] é a velocidade da luz e G = 6,67 × 10-8 [cm³ s-2 g-1] é a constante da gravitação universal. De acordo com o significado geométrico da curvatura escalar, esta igualdade afirma que em uma esfera de massa M e densidade constante, o excesso radial (a diferença entre o raio real e o raio que corresponderia na geometria euclidiana a uma esfera de igual área) é igual a

A Teoria da relatividade mostra que a massa dos corpos depende do observador, pois esta varia com sua velocidade aparente, tal como no conceito de simultaneidade, e portanto também o espaço que se observa (formado por todos os eventos simultâneos). Assim, a equação de Einstein pode enunciar-se também afirmando que para cada observador, a curvatura escalar  do espaço é proporcional à densidade aparente :



Neste artigo estão tabuladas as configurações eletrônicas dos átomos gasosos neutros em seus estados fundamentais. Para cada átomo, as sub-camadas são fornecidas primeiro de forma concisa, depois com todas as sub-camadas escritas, seguidas pelo número de elétrons por camada. Configurações eletrônicas de elementos além do hássio (elemento 108), incluindo aqueles dos elementos não descobertos além do oganesson (elemento 118), são previstas.

Como regra aproximada, as configurações eletrônicas são dadas pelo princípio de Aufbau e pela regra de Madelung. Existem inúmeras exceções; por exemplo, uma das exceções é ​​o cromo, que deveria ter a configuração 1s2 2s2 2p6 3s2 3p6 3d4 4s2, escrita como [Ar] 3d4 4s2, mas cuja configuração real dada na tabela abaixo é [Ar] 3d5 4s1.

Essas configurações de elétrons são dadas para átomos neutros na fase gasosa, que não são as mesmas que as configurações de elétrons para os mesmos átomos em outros ambientes químicos. Em muitos casos, várias configurações estão dentro de uma pequena faixa de energia e as irregularidades mostradas acima são bastante irrelevantes quimicamente.[1] Para elementos com posição acima de 120, as configurações devem ser consideradas muito provisórias e, em alguns casos, a mistura de configurações é relevante.[2]




CROMODINÂMICA QUÂNTICA 

Lagrangiana

A dinâmica dos quarks e glúons é controlada pela lagrangiana da cromodinâmica quântica. A lagrangiana invariante de gauge da QCD é 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.



onde  são os campos dos quarkos, uma função dinâmica do espaço tempo, na representação fundamental dogrupo de gauge SU(3), indexada por  são os campos de glúons, também funções dinâmicas do espaço-tempo, na representação adjunta do grupo de gauge SU(3), indexado por ab,... ; γμ são as matrizes de Dirac conectando a representação spinorial a representação vetorial do grupo de Lorentz

O símbolo  representa o tensor de força do campo de glúon invariante de gauge, análogo ao tensor de força do campo eletromagnético, F^{\mu \nu} \,, em eletrodinâmica quântica. É dado por:[8]

onde fabc são as constantes de estrutura de SU(3). Note que as regras para mover os índices ab, or c de cima para baixo são triviais (assinatura (+, ..., +)) de forma que fabc = fabc = fabc 

//////////////////////////////////////////////////////////////////////////////////////////////////////////////

SISTEMA MULTIDIMENSIONAL GRACELI.


ao passo que para os índices μ or ν devem ser seguidas as regras não triviais, correspondendo a assinatura métrica (+ − − −), por exemplo.

As constantes m e controlam a massa dos quarks e as constantes de acoplamento da teoria, sujeitas a renormalização da teoria quântica completa.

Uma noção teórica importante envolvendo o termo final da lagrangiana acima é a variável do loop de WilsonEsse loop tem papel importante nas formas discretizadas da QCD (veja QCD na rede), e de forma mais geral, distingue entre estados confinados e livres da teoria de gauge. Foi introduzido pelo físico laureado com Nobel Kenneth G. Wilson.





Comentários

Postagens mais visitadas deste blog

SISTEMA MULTIDIMENSIONAL GRACELI EM;